Entropy pelican optimization algorithm (epoa) based feature selection and deep autoencoder (dae) of heart failure status prediction

Author:

Sangeetha Ms. T.ORCID,Manikandan Dr. K.ORCID,Victor Arokia Doss Dr. D.ORCID

Abstract

Introduction: heart Failure (HF) is a complicated condition as well as a significant public health issue. Data processing is now required for machine and statistical learning techniques while it helps to identify key features and eliminates unimportant, redundant, or noisy characteristics, hence minimizing the feature space's dimensions. A common cause of mortality in cases of heart disease is Dilated Cardiomyopathy (DCM). Methods: the feature selection in this work depends on the Entropy Pelican Optimization Algorithm (EPOA). It is a recreation of pelicans' typical hunting behaviour. This is comparable to certain characteristics that lead to better approaches for solving high-dimensional datasets. Then Deep Autoencoder (DAE) classifier has been introduced for the prediction of patients. DAE classifier is employed to compute the system's nonlinear function through data from the normal and failure state. Results: DAE was discovered to not only considerably increase accuracy but also to be beneficial when there is a limited amount of labelled data.Performance metrics like recall, precision, accuracy, f-measure, and error rate has been used for results analysis. Conclusion: publicly available benchmark dataset has been collected from Gene Expression Omnibus (GEO) repository to evaluate and contrast the suitability of the suggested classifier with other existing methods

Publisher

Salud, Ciencia y Tecnologia

Reference27 articles.

1. Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, Francis GS, Lenihan D, Lewis EF, McNamara DM, and Pahl E. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation, 134(23), pp. e579-e646. https://doi.org/10.1161/CIR.0000000000000455.

2. Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Böhm M, Duboc D, Gimeno J, de Groote P, Imazio M, and Heymans S. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. European heart journal, 37(23), pp. 1850-1858. https://doi.org/10.1093/eurheartj/ehv727.

3. Merlo M, Cannatà A, Pio Loco C, Stolfo D, Barbati G, Artico J, Gentile P, De Paris V, Ramani F, Zecchin M, and Gigli M. Contemporary survival trends and aetiological characterization in non‐ischaemic dilated cardiomyopathy. European Journal of Heart Failure, 22(7), pp. 1111-1121. https://doi.org/10.1002/ejhf.1914.

4. Miladinović A, Ajčević M, Jarmolowska J, Marusic U, Colussi M, Silveri G, Battaglini PP, and Accardo A. Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study. Computer Methods and Programs in Biomedicine, 198, pp. 105808. https://doi.org/10.1016/j.cmpb.2020.105808.

5. Obermeyer Z, and Emanuel EJ. Predicting the future—big data, machine learning, and clinical medicine. The New England journal of medicine, 375(13), pp. 1216–1219. https://doi.org/10.1056%2FNEJMp1606181.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3