Prime and Möbius correlations for very short intervals in $\fq[x]$

Author:

Kurlberg Pär,Rosenzweig Lior

Abstract

abstract: We investigate function field analogs of the distribution of primes, and prime $k$-tuples, in ``very short intervals'' of the form $I(f):=\{f(x) + a : a \in\fp\}$ for $f(x)\in\fp[x]$ and $p$ prime, as well as cancellation in sums of function field analogs of the M\"{o}bius $\mu$ function and its correlations (similar to sums appearing in Chowla's conjecture). For generic $f$, i.e., for $f$ a Morse polynomial, the error terms are roughly of size $O(\sqrt{p})$ (with typical main terms of order $p$). For non-generic $f$ we prove that independence still holds for ``generic'' set of shifts. We can also exhibit examples for which there is no cancellation at all in M\"{o}bius/Chowla type sums (in fact, it turns out that (square root) cancellation in M\"{o}bius sums is {\em equivalent} to (square root) cancellation in Chowla type sums), as well as intervals where the heuristic ``primes are independent'' fails badly. The results are deduced from a general theorem on correlations of arithmetic class functions; these include characteristic functions on primes, the M\"{o}bius $\mu$ function, and divisor functions (e.g., function field analogs of the Titchmarsh divisor problem can be treated). We also prove analogous, but slightly weaker, results in the more delicate fixed characteristic setting, i.e., for $f(x)\in\fq[x]$ and intervals of the form $f(x)+a$ for $a\in\fq$, where $p$ is fixed and $q=p^{l}$ grows.

Publisher

Project MUSE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3