A review on Transforming plastic wastes into fuel

Author:

Manickavelan K.,Ahmed S.,Mithun K.,Sathish P.,Rajasekaran R.,Sellappan N.

Abstract

The application of plastics in various sectors led to its increased production globally and this demand, in turn, caused an overflow of plastic waste in landfills, illegal dumping in the sea, and environmental pollution. To overcome this issue, several alternatives for managing plastic wastes have been developed and among them, reuse, recycling, and energy recovery methods are highly acknowledged methods. Nonetheless, recycling methods come with certain disadvantages like mixing and segregation of wastes, high labour costs associated with segregation and processing, by-product disposal, and its usage. Researchers have shifted their focus to energy recovery systems because of these drawbacks. Extensive research in this area led to the development of converting waste plastics into liquid fuel through the process called pyrolysis. The pyrolysis process can thermally degrade plastics in the absence of oxygenproducing oil and monomers. The temperature has the most impact on the pyrolysis process and depending on the types of plastic wastes, the pyrolysis temperature varies between 300 – 800 oC. The oil yield due to the variation in temperature varies between 45 – 95 wt.% and the calorific value of the oil has been observed to be in the range of 9679 – 11428.5 kCal/kg, which is similar to the other commercial fuels. Also, the review indicates that it is possible to extract up to 84% of fuel from 1-kg plastic at 360 oC. As a result, following refining/blending with conventional fuels, pyrolysis oil can be utilised as an alternate source of energy and transportation fuel. Apart from the temperature, the other influencing factors include, the reactor design and its size, pressure, heating rate, residence time and feedstock composition. The pyrolysis process was examined in terms of plastic types and primary process factors that impacted the end result, such as oil, gaseous, and char. Temperatures, reactor types, residence duration, pressure, catalysts, and other critical factors were examined in this work. Furthermore, the study examines technological problems and current advances.

Publisher

Nigerian Society of Physical Sciences

Subject

General Physics and Astronomy,General Mathematics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3