Effect of temperature on optical, structural, morphological and antibacterial properties of biosynthesized ZnO nanoparticles

Author:

Kamarajan G.,Anburaj D. Benny,Porkalai V.,Muthuvel A.,Nedunchezhian G.

Abstract

Nanomaterials can be produced by using nontoxic biological compounds that are both eco-friendly and economically viable. Temperature dependent ecological synthesis of ZnO nanoparticles was carried out with leaf extract of Ocimum sanctum. An electron microscope study confirmed that a temperature of 400 oC was optimal for the formation of ZnO nanoparticles generated by biosynthesizing ZnO nanoparticles. The normal crystalline size of biosynthesized ZnO nanoparticles calculated via XRD analysis are found to be 18, 12 and 17 nm for 300 - 500 oC, respectively. The direct optical band gap energy deducted from Tauc approximation range to be 3.32-3.20 eV. In SEM analysis, depending on the temperature of the synthesis conditions, different ZnO morphologies are also found. Functional groups analysis confirmed the incidence of carboxyl and amide groups in the O. sanctum leaf extract. The ZnO nanoparticles analysed at room temperature using photoluminescence, a broad visible band is observed around 382 nm for all samples. Furthermore, this study determines that the synthesized ZnO nanoparticles provide antimicrobial efficacy against clinical strains of Bacillus subtilis and Staphylococcus aureus, as well as against standard strains of Escherichia coli. Several fields, including cosmetics and pharmaceuticals, can benefit from biosynthesized nanoparticles.

Publisher

Nigerian Society of Physical Sciences

Subject

General Physics and Astronomy,General Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3