Impact of environmental and soil factors in the prediction of soil carbon dioxide emissions under different tillage systems

Author:

Kulmány István MihályORCID,Giczi ZsoltORCID,Beslin AnaORCID,Bede LászlóORCID,Kalocsai RenátóORCID,Vona ViktóriaORCID

Abstract

Understanding the roles of natural drivers in greenhouse gas (GHG) emissions of arable fields is crucial for adequate agricultural management. This study investigated the combined effect of two tillage treatments (NT - no-tillage; CT - tillage with mouldboard ploughing) and environmental (air pressure, air temperature) and soil factors (total organic carbon, gravimetric water content and soil penetration resistance) on soil carbon dioxide (CO2) emissions in maize in 2020 and 2021. The soil tubes required for the laboratory measurement were derived from three different altitudes of the two differently cultivated fields from Fejér county, Hungary. The typical soil type was Chernozem in both fields. At the time of soil sampling, soil penetration resistance was measured with a 06.15SA Penetrologger in 10 repetitions. To preserve the moisture content of the soil columns during the investigation, moisture replenishment was performed equal to the degree of weekly theoretical evapotranspiration. Emissions measurements of soil columns were performed by close chamber technique for five weeks from sampling, 15 times, in 3 repetitions in laboratory conditions. The data were evaluated by two-way ANOVA, followed by the Tukey HSD multiple comparison test and two-tailed Student’s T-test at a significance level of p<0.05. The combined effect of environmental factors on soil carbon dioxide emissions was investigated using stepwise multiple linear regression. It has been proved that the observed difference between soil penetration resistance and soil carbon dioxide emissions was significant between CT and NT cultivation at different stages of the growing season. The analysis of the interaction of the experimental factors revealed that the combined effect of soil penetration resistance, total organic carbon and moisture content in tillage system (adjusted R2=0.92 at a significance level of p=0.05) in 2020, while the combined effect of moisture content and air temperature in the no-tillage system (adjusted R2=0.79 at a significance level of p=0.085) has the most significant effect on soil CO2 emissions in 2020. In 2021, the air temperature for the tillage system (adjusted R2=0.74 at a significance level of p=0.05) and the combined effect of air temperature and pressure for no-tillage systems (adjusted R2=0.69 at a significance level of p=0.1) played an important role in soil CO2 emissions. These observations highlight that different soil and environmental factors of different tillage significantly impact the soil carbon dioxide emissions in different years.

Publisher

Ecocycles

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3