Abstract
This article introduces two numerical methods to address boundary value problems associated with secondorder and fractional differential equations. These methods employ two parameters related to shifted Gegenbauer polynomials as their basis functions. The process involves establishing a differentiation operational matrix for the shifted Gegenbauer polynomials. Subsequently, the initial/boundary value problems for ordinary and fractional differential equations are transformed into a system of equations through the Galerkin, collocation, and tau methods. The convergence analysis is ensured by leveraging theorems pertaining to the shifted Gegenbauer polynomials. To validate the accuracy of the approach, numerous numerical examples are presented.
Publisher
Universal Wiser Publisher Pte. Ltd
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献