Global climate change and North American mammalian evolution

Author:

Alroy John,Koch Paul L.,Zachos James C.

Abstract

We compare refined data sets for Atlantic benthic foraminiferal oxygen isotope ratios and for North American mammalian diversity, faunal turnover, and body mass distributions. Each data set spans the late Paleocene through Pleistocene and has temporal resolution of 1.0 m.y.; the mammal data are restricted to western North America. We use the isotope data to compute five separate time series: oxygen isotope ratios at the midpoint of each 1.0-m.y. bin; changes in these ratios across bins; absolute values of these changes (= isotopic volatility); standard deviations of multiple isotope measurements within each bin; and standard deviations that have been detrended and corrected for serial correlation. For the mammals, we compute 12 different variables: standing diversity at the start of each bin; per-lineage origination and extinction rates; total turnover; net diversification; the absolute value of net diversification (= diversification volatility); change in proportional representation of major orders, as measured by a simple index and by a G-statistic; and the mean, standard deviation, skewness, and kurtosis of body mass. Simple and liberal statistical analyses fail to show any consistent relationship between any two isotope and mammalian time series, other than some unavoidable correlations between a few untransformed, highly autocorrelated time series like the raw isotope and mean body mass curves. Standard methods of detrending and differencing remove these correlations. Some of the major climate shifts indicated by oxygen isotope records do correspond to major ecological and evolutionary transitions in the mammalian biota, but the nature of these correspondences is unpredictable, and several other such transitions occur at times of relatively little global climate change. We conclude that given currently available climate records, we cannot show that the impact of climate change on the broad patterns of mammalian evolution involves linear forcings; instead, we see only the relatively unpredictable effects of a few major events. Over the scale of the whole Cenozoic, intrinsic, biotic factors like logistic diversity dynamics and within-lineage evolutionary trends seem to be far more important.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3