Abstract
Abstract
Preservation of stochastic orders through the system signature has captured the attention of researchers in recent years. Signature-based comparisons have been made for the usual stochastic order, hazard rate order, and likelihood ratio orders. However, for the mean residual life (MRL) order, it has recently been proved that the preservation result does not hold true in general, but rather holds for a particular class of distributions. In this paper, we study whether or not a similar preservation result holds for the mean inactivity time (MIT) order. We prove that the MIT order is not preserved from signatures to system lifetimes with independent and identically distributed (i.i.d.) components, but holds for special classes of distributions. The relationship between these classes and the order statistics is also highlighted. Furthermore, the distribution-free comparison of the performance of coherent systems with dependent and identically distributed (d.i.d.) components is studied under the MIT ordering, using diagonal-dependent copulas and distorted distributions.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献