Error-Related Brain Activity in ADHD: A Systematic Review and Meta-Analysis of Electroencephalography Markers of Cognitive Control Performance

Author:

Awasthi Pranjali

Abstract

AbstractBackgroundDeviant cognitive control performance is implicated in Attention-Deficit-Hyperactivity-Disorder (ADHD). It is also conjectured to be a potential diagnoser and differentiator between the Inattentive and Hyperactive-Impulsive ADHD types. Reliable measures have not been established due to the variation in published results.MethodsWe performed a systematic review and meta-analysis of the literature published up to May 2021 with data on electrophysiological correlates, that is, EEG correlates of cognitive control monitoring (error-related negativity, ERN; error positivity, Pe; correct-response negativity, CRN) in ADHD patients and the efficiency of EEG recordings in differentiating between ADHD types. Multiple databases including PubMed, Scopus, Google Scholar, bioRxiv, and medRxiv were searched for eligible literature. Meta-Analyses were performed through statistical tools provided by the open-source metafor package and separately using the Hedge’s g standardized mean differences.ResultsMeta-Analyses were performed on a shortlisted set of 125 studies involving 7248 participants. To avoid extraneous variables, the sex ratio was maintained at 50:50, and the age groups of participants were equally varied between early teenagers (12-15 years), late teenagers (15-18 years), young adults (21-25), and middle-aged adults (29-37). The ADHD-afflicted group showed reduced ERN (Hedge’s g = −0.58 [CIs: −0.76, −0.35]) and reduced Pe (Hedge’s g = −0.65 [CIs: −0.79, −0.44). The Hyperactive-Impulsive ADHD types (2574/7248 participants) showed an increased CRN (Hedge’s g = 0.68 [CIs: 0.71, 0.29]), while the Inattentive ADHD Types (4674/7248 participants) showed a slightly reduced CRN (Hedge’s g = −0.25 [CIs: −0.31, −0.28]. The prevalence of counted task errors was higher in the teenagers’ group (12-18 years) than the adults’ group (21-37 years).ConclusionsResults suggest that EEG Pattern Markers (especially Pe and CRN) can act as strong differentiators/diagnosers between the Hyperactive-Impulsive and Inattentive ADHD types. In further development, deep learning classifiers can be built for ADHD types using EEG Markers as Features and statistical values as weights.Not Part of Abstract, Additional NotesPranjali Awasthi is a 14-year-old researcher working on the overlap of neuroimaging and machine learning at the Neural Dynamics of Control Lab, FIU. She is an avid speaker on topics of AI Awareness and Ethics. Here is a recent feature by the Analytics India Magazine: https://analyticsindiamag.com/how-this-15-year-old-created-a-research-career-in-machine-learning.FundingNew York Institute of Technology MRGA Committee

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3