Karenia mikimotoi induced adverse impacts on abalone Haliotis discus hannai in Fujian coastal areas, China

Author:

Liao Ling-ZhiORCID,Lin Jia-NingORCID,Ding Xin-Shu,Feng Song,Yan Tian

Abstract

Abstract Large-scale outbreaks of the dinoflagellate Karenia mikimotoi caused substantial mortality of abalone, Haliotis discus hannai in Fujian, China in 2012, resulting in 20 billion in economic losses to abalone industries. However, the mechanism behind the mortality, especially the reaction of abalone to this microalgal toxicity, which possibly differed significantly from the former ‘fish killer’ strain in the South China Sea (SCS). Our study revealed that K. mikimotoi FJ-strain exhibited a four-fold higher haemolytic toxicity than the SCS-strain during the late exponential phase. At the microalgal cell density of 3 × 107 cell L−1, the FJ-strain caused abalone mortality of 67% in 48 h, with decreased granulocyte–hyalinocyts ratio and phagocytic activity by 58.96% and 75.64%, respectively, increased haemocyte viability by 4.8-fold and severe gill damage. The toxic effect only worked for the haemolytic toxicity from active algal cells, which were probably produced under the contact of algal cells and abalone gills. However, under exposure to the SCS-strain, more than 80% of individuals survived under aeration. The results indicated that FJ-strain was a new K. mikimotoi ecotype with stronger toxicity. It evoked severe effects, with complete abalone mortality within 24 h under the cascading effect of non-aeration (dissolved oxygen declined to 2.0 mg L−1), when exposed to K. mikimotoi FJ-strain at the above density. Thus, apart from the microalgal toxicity, DO depletion exacerbated the mortality of abalone in the experiment. The massive abalone mortalities in Fujian were probably caused by the combination of microalgal toxic effects and oxygen depletion, leading to immunological depression and histopathological disruption.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3