Quantifying situation awareness for small unmanned aircraft

Author:

McAree O.,Aitken J.M.,Veres S.M.

Abstract

ABSTRACTA novel statistical model is presented to quantify situation awareness in the operation of small civilian Unmanned Aircraft Systems (UAS). Today, the vast majority of small Unmanned Aircraft Systems (UAS) operation takes place under Visual Line of Sight (VLOS) of a human operator, who is wholly responsible for the safety of the flight. As operation begins to move to Beyond Visual Line of Sight (BVLOS), it is likely that this responsibility will become shared between operator and the increasingly autonomous UAS itself. Before we seek to quantify the safety of such a system, it is beneficial to analyse the safety of existing Visual Line of Sight (VLOS) operations to provide a target level of safety. Prior to considering any on-board decision making, it is essential to ensure that the artificial situation awareness system of a UAS in Beyond Visual Line of Sight (BVLOS) is at least as good as awareness of a human operator. The paper provides a probabilistic theory and model for the high-level abstractions of situation awareness to guide future assessment of BVLOS operations.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference16 articles.

1. Veres S.M. , McAree O. and Aitken J.M. Towards formal verification of small and micro UAS, European Control Conference (ECC), Aalborg, IEEE, 2016, pp. 433–440.

2. Stanton N.A. , Salmon P.M. , Jenkins D.P. , Walker G.H. , Rafferty L.A. and Revell K. Decisions, decisions and even more decisions: The impact of digitisation in the land warfare domain, Proceedings of NDM9, the 9th International Conference on Naturalistic Decision Making, 2009, British Computer Society, London, BCS Learning & Development Ltd., pp 1–9.

3. Trust, self-confidence, and operators' adaptation to automation

4. Artificial Situation Awareness for Increased Autonomy of Unmanned Aerial Systems in the Terminal Area

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3