A mechanistic evaluation of the local Bloch wave approximation in graded arrays of vertical barriers

Author:

Wilks BenORCID,Montiel FabienORCID,Wakes SarahORCID

Abstract

Wave interaction with graded metamaterials exhibits the phenomenon of rainbow reflection, in which broadband wave signals slow down and separate into their frequency components before being reflected. This phenomenon has been qualitatively understood by describing the wave field in the metamaterial using the local Bloch wave approximation (LBWA), which locally represents the wave field as a superposition of propagating wave solutions in the cognate infinite periodic media (so-called Bloch waves). We evaluate the performance of the LBWA quantitatively in the context of two-dimensional linear water-wave scattering by graded arrays of surface-piercing vertical barriers. To do this, we implement the LBWA numerically so that the Bloch waves in one region of the graded array are coupled to Bloch waves in adjacent regions. This coupling is computed by solving the scattering of Bloch waves across the interface between two semi-infinite arrays of vertical barriers, where the barriers in each semi-infinite array can have different submergence depths. Our results suggest that the LBWA accurately predicts the free surface amplitude across a wide range of frequencies, except those just above the cutoff frequencies associated with each of the vertical barriers in the array. This highlights the importance of decaying Bloch modes above the cutoff in rainbow reflection.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3