Abstract
Low Reynolds number turbulence in wall-bounded shear flows en route to laminar flow takes the form of spatially intermittent turbulent structures. In plane shear flows, these appear as a regular pattern of alternating turbulent and quasi-laminar flow. Both the physical and the spectral energy balance of a turbulent–laminar pattern in plane Couette flow are computed and compared to those of uniform turbulence. In the patterned state, the mean flow is strongly modulated and is fuelled by two mechanisms: primarily, the nonlinear self-interaction of the mean flow (via mean advection), and secondly, the extraction of energy from turbulent fluctuations (via negative spectral production, associated with an energy transfer from small to large scales). Negative production at large scales is also found in the uniformly turbulent state. Important features of the energy budgets are surveyed as a function of$Re$through the transition between uniform turbulence and turbulent–laminar patterns.
Funder
Centre National de la Recherche Scientifique
Simons Foundation
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献