Abstract
In the propagation and evolution of sea waves, previous studies pointed out that the occurrence of the freak wave height is significantly related to the quasi-resonant four-wave interaction in the modulated waves. From numerical--experimental study over an uneven bottom, the nonlinear effect caused by the bathymetry change also contributes to the occurrence of extreme events in unidirectional waves. To comprehensively analyse the two-dimensional wavefield, this study develops an evolution model for a directional random wavefield based on the depth-modified nonlinear Schrödinger equation, which considers the nonlinear resonant interactions and the wave shoaling the shallow water. Through Monte Carlo simulation, we discuss the directional effect on the four-wave interaction in the wave train and the maximum wave height distribution from deep to shallow water with a slow varying slope. The numerical result indicates that the directional spreading has a dispersion effect on the freak wave height. In a shallow-water environment, this effect becomes weak, and the bottom topography change is the main influencing factor in the wave evolution.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Reference51 articles.
1. Waseda, T. 2006 Impact of directionality on the extreme wave occurrence in a discrete random wave system. In Proceedings of 9th International Workshop on Wave Hindcasting and Forecasting, Victoria, Canada, p. 8. Environment Canada.
2. Nonlinear Modulation of Gravity Waves
3. Statistics of Extreme Waves in Coastal Waters: Large Scale Experiments and Advanced Numerical Simulations
4. Numerical experiments on wave statistics with spectral simulation;Goda;Rep. Port Harbour Res. Inst.,1970
5. Extreme wave statistics of long-crested irregular waves over a shoal
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献