Modelling the wall friction coefficient for a simple shear granular flow in view of the degradation mechanism

Author:

Lin Cheng-ChuanORCID,Artoni RiccardoORCID,Yang Fu-LingORCID,Richard PatrickORCID

Abstract

A steady granular flow experiment was performed in a confined annular shear cell to examine how the wall friction coefficient $\mu _w$ degrades from the intrinsic sliding friction coefficient $f$ between the grains and the container wall. Two existing models are invoked to examine the decay trend of $\mu _w/f$ in view of the ratio of shear velocity to the square root of granular temperature $\chi$ (Artoni & Richard, Phys. Rev. Lett., vol. 115, 2015, 158001) and the ratio of grain angular and slip velocities $\varOmega$ (Yang & Huang, Granul. Matt., vol. 18, issue 4, 2016, p. 77), respectively. As both models correlate $\mu _w/f$ to different flow properties, a hidden relation is speculated between $\chi$ and $\varOmega$ , or equivalently, between the granular temperature and the grain rotation speed. We used experiment data to confirm and reveal this hidden relation. From there, a unified $\mu _w/f-\chi$ model is proposed with physical meanings for the model coefficients and to show general agreement with the measured trend. Hence we may conclude that both the fluctuations in grain translations and their mean rotation are the crucial yet equivalent mechanisms to degrade $\mu _w/f$ .

Funder

National Science and Technology Council

Campus France

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3