Characteristics of fluid–fluid displacement in model mixed-wet porous media: patterns, pressures and scalings

Author:

Irannezhad Ashkan,Primkulov Bauyrzhan K.ORCID,Juanes RubenORCID,Zhao BenzhongORCID

Abstract

We study numerically the characteristics of fluid–fluid displacement in simple mixed-wet porous micromodels using a dynamic pore network model. The porous micromodel consists of distinct water-wet and oil-wet regions, whose fractions are varied systematically to yield a variety of displacement patterns over a wide range of capillary numbers. We find that the impact of mixed-wettability is most prominent at low capillary numbers, and it depends on the complex interplay between wettability fraction and the intrinsic contact angle of the water-wet regions. For example, the fractal dimension of the displacement pattern is a monotonically increasing function of wettability fraction in flow cells with strongly water-wet clusters, but it becomes non-monotonic with respect to wettability fraction in flow cells with weakly water-wet clusters. Additionally, mixed-wettability also manifests itself in the injection pressure signature, which exhibits fluctuations especially at low wettability fraction. Specifically, preferential filling of water-wet regions leads to reduced effective permeability and higher injection pressure, even at vanishingly small capillary numbers. Finally, we demonstrate that scaling analyses based on a weighted average description of the overall wetting state of the mixed-wet system can effectively capture the variations in observed displacement pattern morphology.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3