Thermal equilibrium of collisional non-neutral plasma in a magnetic dipole trap

Author:

Steinbrunner P.ORCID,O'Neil T.M.,Stoneking M.R.ORCID,Dubin D.H.E.

Abstract

This paper discusses thermal equilibrium states of single-species plasmas, such as pure electron plasmas and pure positron plasmas, that are confined in a dipole trap. Thermal equilibrium states for such plasmas are routinely realized in the homogeneous magnetic field of Penning–Malmberg traps. We generalize the theory of these states to include inhomogeneous magnetic dipole fields. The approach to thermal equilibrium takes place in two stages with well separated time scales. On the collision time scale, thermal equilibrium is established along each magnetic field line. On the much longer transport time scale, heat conduction and viscosity bring the plasmas on different flux contours into thermal equilibrium, we call this a state of global thermal equilibrium. We present numerical results for local and global thermal equilibria. These results agree with the analytic predictions for charge collections that are large compared with the Debye length. There is, in principle, no limit to the confinement time of a single-species plasma in a global thermal equilibrium state. Experiments with hot electron–ion plasmas performed in the LDX and RT1 devices give us confidence that, in contrast to a Penning–Malmberg trap, a magnetic dipole field can also confine cold quasi-neutral electron–positron pair plasmas on the time scale of the phenomena of interest. Such pair plasmas are assumed to form in the magnetosphere of neutron stars but have so far not been realized in a laboratory. The creation of an electron–positron pair plasma is the main goal of the APEX collaboration.

Funder

U.S. Department of Energy

National Science Foundation

H2020 European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3