Abstract
A high-speed solenoid-type pulsed valve is applied to a water-fuelled magnetron sputtering thruster, which can lead a compact and neutralizer-free electric propulsion device by generating a thrust due to the ejection of the sputtered target material, in order to minimize the size of the gas feeding system. The pulsed valve is opened for approximately 5 msec and the gaseous water is introduced into the source via a gas line connected to the source. A dc high voltage is firstly applied between the cathode and the anode; then the discharge is sustained for the period in which a gas pressure enough for the discharge is maintained and a change in the discharge mode is observed during the discharge pulse. To investigate the impact of the mode change on the thrust generation, a temporally resolved measurement of the force is equivalently performed by installing a pulsed voltage power supply and by changing the pulse width of the discharge voltage. The results show the temporal reduction of the thrust-to-power ratio during a pulsed discharge due to the nonlinear correlation between ion energy and sputtering yield. It is suggested that the use of a pulsed valve would be useful for downsizing of the electric propulsion system, while an optimization to properly control the gas flow rate is needed for further development.
Funder
Japan Science and Technology Agency
Japan Society for the Promotion of Science
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献