Proton imaging of 3D density distribution for dense DT plasmas using regularization method

Author:

Li Xuemei,Wang Yuhua

Abstract

AbstractThree-dimensional (3D) density distribution of inhomogeneous dense deuterium tritium plasmas in laser fusion is revealed by the energy loss of fast protons going through the plasmas. The fast protons generated in the laser–plasma interaction can be used for the simulation of a plasma density diagnostics. The large linear and ill-posed equation set of the densities of all grids is obtained and then solved by the Tikhonov regularization method after dividing a 3D area into grids and knowing the initial and final energies of the protons. 3D density reconstructions with six proton sources are done without and with random noises added to the final energy. The revealed density is a little smaller than the simulated one in most simulated zones and the error is as much as those of 2D reconstructions with four proton sources. The picture element N is chosen as 2744 with consideration of smoothness and calculation memory of the computers. With fast calculation speed and low error, the Tikhonov regularization method is more suitable for 3D density reconstructions with large calculation amount than simultaneous iterative reconstruction method. Also the analytical expressions between the errors and the noises are established. Furthermore, the density reconstruction method in this paper is particularly suitable for plasmas with small density gradient. The errors without noises and with 2% noises added to the final proton energies are 3 and 20%, respectively, for the homogeneous plasma.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3