Spontaneous and artificial direct nanostructuring of solid surface by extreme ultraviolet laser with nanosecond pulses

Author:

Kolacek K.,Schmidt J.,Straus J.,Frolov O.,Prukner V.,Melich R.,Psota P.

Abstract

AbstractNanostructuring can be either spontaneously appearing (such as laser-induced periodic surface structures, and diffraction patterns – for example, in windows of grid proximity-standing at the ablated target-surface) or artificially created (like – as we hoped – interference patterns) that can be in some extend controlled. Due to that a new interferometer (belonging to wave-front division category) with two aspheric mirrors has been developed. Each of these mirrors reflects approximately one half of incoming laser beam and focuses it into a point image. Both focused beams have to intersect each other, and in the intersection region an interference pattern was expected. However, the first tests showed that some other spontaneously appearing interference pattern with substantially larger fringe-pitch is generated. The origin of this idle interference pattern is discussed.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference42 articles.

1. Total reflection amorphous carbon mirrors for vacuum ultraviolet free electron lasers

2. Single-shot soft x-ray laser-induced ablative microstructuring of organic polymer with demagnifying projection

3. Principles and present state of capillary-discharge-pumped soft x-ray lasers

4. Kozlova M. (2009). Advanced soft X-ray interferometer for diagnostics of dense plasmas and surface holography. PhD Thesis. Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic.

5. Soft X-Rays and Extreme Ultraviolet Radiation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3