Impairments of large-scale functional networks in attention-deficit/hyperactivity disorder: a meta-analysis of resting-state functional connectivity

Author:

Gao Yingxue,Shuai Dandan,Bu Xuan,Hu Xinyu,Tang Shi,Zhang Lianqing,Li Hailong,Hu Xiaoxiao,Lu Lu,Gong Qiyong,Huang XiaoqiORCID

Abstract

AbstractAltered resting-state functional connectivity (rsFC) has been noted in large-scale functional networks in attention-deficit/hyperactivity disorder (ADHD). However, identifying consistent abnormalities of functional networks is difficult due to varied methods and results across studies. To integrate rsFC alterations and search for coherent patterns of intrinsic functional network impairments in ADHD, this research conducts a coordinate-based meta-analysis of voxel-wise seed-based rsFC studies comparing rsFC between ADHD patients and healthy controls. A total of 25 datasets from 21 studies including 700 ADHD patients and 580 controls were analyzed. We extracted the coordinates of seeds and between-group effects. Each seed was then categorized into a seed-network by its location within priori 7-network parcellations. Then, pooled meta-analyses were conducted for the default mode network (DMN), frontoparietal network (FPN) and affective network (AN) separately, but not for the ventral attention network (VAN), dorsal attention network (DAN), somatosensory network (SSN) and visual network due to a lack of primary studies. The results showed that ADHD was characterized by hyperconnectivity between the FPN and regions of the DMN and AN as well as hypoconnectivity between the FPN and regions of the VAN and SSN. These findings not only support the triple-network model of pathophysiology associated with ADHD but also extend this model by highlighting the involvement of the SSN and AN in the mechanisms of network interactions that may account for motor hyperactivity and impulsive symptoms.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3