High-dose folic acid supplementation in rats: effects on gestation and the methionine cycle

Author:

Achón M.,Alonso-Aperte E.,Reyes L.,Úbeda N.,Varela-Moreiras G.

Abstract

There is new evidence that a good folate status may play a critical role in the prevention of neural-tube defects and in lowering elevated homocysteine concentrations. This adequate folate status may be achieved through folic acid dietary supplementation. Folate is a water-soluble vitamin with a low potential toxicity. However, the possible consequences of long-term high-dose folic acid supplementation are unknown, especially those related to the methionine cycle, where folate participates as a substrate. With the aim of evaluating such possible effects, four groups of Wistar rats were classified on the basis of physiological status (virgin v. pregnant) and the experimental diet administered (folic-acid-supplemented, 40 mg/kg diet v. control, 2 mg folic acid/kg diet). Animals were fed on the diets for 3 weeks. Results showed that gestation outcome was adequate in both groups regardless of the dietary supplementation. However, there were reductions (P < 0·001) in body weight and vertex-coccyx length in fetuses from supplemented dams v. control animals. Folic acid administration also induced a higher (P < 0·01) S-adenosylmethionine : S-adenosylhomocysteine value due to increased S-adenosylmethionine synthesis (P < 0·01). However, hepatic DNA methylation and serum methionine concentrations remained unchanged. Serum homocysteine levels were reduced in supplemented dams (P < 0·05). Finally, pregnancy caused lower serum folate, vitamin B6 and vitamin B12 levels (P < 0·05). Folic acid administration prevented the effect of pregnancy and raised folate levels in dams, but did not change levels of vitamins B12 and B6. These new findings are discussed on the basis of potential benefits and risks of dietary folic acid supplementation.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3