Abstract
Abstract
Understanding the subsurface is crucial in building a sustainable future, particularly for urban centers. Importantly, the thermal effects that anthropogenic infrastructure, such as buildings, tunnels, and ground heat exchangers, can have on this shared resource need to be well understood to avoid issues, such as overheating the ground, and to identify opportunities, such as extracting and utilizing excess heat. However, obtaining data for the subsurface can be costly, typically requiring the drilling of boreholes. Bayesian statistical methodologies can be used towards overcoming this, by inferring information about the ground by combining field data and numerical modeling, while quantifying associated uncertainties. This work utilizes data obtained in the city of Cardiff, UK, to evaluate the applicability of a Bayesian calibration (using GP surrogates) approach to measured data and associated challenges (previously not tested) and to obtain insights on the subsurface of the area. The importance of the data set size is analyzed, showing that more data are required in realistic (field data), compared to controlled conditions (numerically-generated data), highlighting the importance of identifying data points that contain the most information. Heterogeneity of the ground (i.e., input parameters), which can be particularly prominent in large-scale subsurface domains, is also investigated, showing that the calibration methodology can still yield reasonably accurate results under heterogeneous conditions. Finally, the impact of considering uncertainty in subsurface properties is demonstrated in an existing shallow geothermal system in the area, showing a higher than utilized ground capacity, and the potential for a larger scale system given sufficient demand.
Funder
Division of Civil, Mechanical and Manufacturing Innovation
UK Research and Innovation
Engineering and Physical Sciences Research Council
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability
Reference92 articles.
1. Nicholson, R , Alferink, H , Paton-simpson, E , Gravatt, M , Guzman, S , Popineau, J , Sullivan, JPO , Sullivan, MJO and Maclaren, OJ (2020) An introduction to optimal data collection for geophysical model calibration problems. In Proceedings 42nd New Zealand Geothermal Workshop, November, Waitangi, New Zealand.
2. Rank-Normalization, Folding, and Localization: An Improved Rˆ for Assessing Convergence of MCMC (with Discussion)
3. Inverse methods in hydrogeology: Evolution and recent trends
4. Guidelines for the Bayesian calibration of building energy models
5. Ground-source heat pumps systems and applications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献