Generation and characterization of fully developed state in open channel flow

Author:

Das S.ORCID,Balachandar R.ORCID,Barron R.M.ORCID

Abstract

A fully developed approach flow is necessary in open channel studies to maintain commonality among datasets obtained from different facilities. Two-component planar particle image velocimetry is used to study the characteristics of fully developed smooth open channel flow at a constant Reynolds number of 3.9 × 104 based on the maximum velocity and flow depth. The near-bed boundary layer is tripped to achieve a fully developed state and compared with the under- and over-tripped cases. The Reynolds stresses and higher-order moments are used as indicators to establish the fully developed state. Flow properties are explored by identifying uniform momentum zones (UMZs) using the probability density function of streamwise velocities. The instances are grouped based on the number of UMZs (NUMZ) and conditional averaging of flow variables of each group is used to evaluate the difference in flow properties between the developed and the developing flow. Large-scale ejections are found in the logarithmic layer when NUMZ is higher, whereas a lower number indicates the existence of large-scale sweeping motions. The distribution of the conditionally averaged ratio of the shear contribution from ejections and sweeps and velocity deficits shows a vertical variability in the fully developed state. The large-scale and pointwise quadrant events are used simultaneously to depict variability in inner flow properties between developing and fully developed flow which cannot be recognized in the mean flow characteristics. The sweep events have much higher shear generation in the outer flow in the fully developed state whereas the shear stress contribution from ejection is lower than that in developing flow.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3