Author:
Fabre Jean,Figueroa-Espinoza Bernardo
Abstract
AbstractThe symmetry of Taylor bubbles moving in a vertical pipe is likely to break when the liquid flows downward at a velocity greater than some critical value. The present experiments performed in the inertial regime for Reynolds numbers in the range $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}100<\mathit{Re} < 10\, 000$ show that bifurcation to an eccentric motion occurs, with a noticeable increase of the bubble velocity. The influence of the surface tension parameter (an inverse Eötvös number), $\varSigma $, has been investigated for $0.0045<\varSigma <0.067$. It appears that the motion of an asymmetric bubble is much more sensitive to surface tension than that of a symmetric bubble. For any given $\varSigma $, the symmetry-breaking bifurcation occurs in both laminar and turbulent flow at the same vorticity-to-radius ratio ${(\omega /r)}_0$ on the axis of the carrier fluid. This conclusion also applies to results obtained previously from numerical experiments in plane flows.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献