Molecular and immunohistochemical studies on epidermal responses in Atlantic salmon Salmo salar L. induced by Gyrodactylus salaris Malmberg, 1957

Author:

Kania P. W.,Evensen O.,Larsen T. B.,Buchmann K.

Abstract

AbstractVarious strains of Atlantic salmon exhibit different levels of susceptibility to infections with the ectoparasitic monogenean Gyrodactylus salaris. The basic mechanisms involved in this differential ability to respond to this monogenean were elucidated using controlled and duplicated challenge experiments. Highly susceptible East Atlantic salmon allowed parasite populations to reach up to 3000 parasites per host within 6 weeks, whereas less susceptible Baltic salmon never reached larger parasite burdens than 122 parasites per host during the same period. The present study, comprising immunohistochemistry and gene expression analyses, showed that highly susceptible salmon erected a response mainly associated with an increased expression of interleukin-1β (IL-1β), interferon-γ (IFN-γ), IL-10 and infiltration of CD3-positive cells in the epidermis of infected fins. Less susceptible salmon showed no initial response in fins but 3–6 weeks post-infection a number of other genes (encoding the immune-regulating cytokine IL-10, cell marker MHC II and the pathogen-binding protein serum amyloid A) were found to be up-regulated. No proliferation of epithelial cells was seen in the skin of less susceptible salmon, and IL-10 may play a role in this regard. It can be hypothesized that resistant salmon regulate the parasite population by restricting nutrients (sloughed epithelial cells and associated material) and thereby starve the parasites. In association with this ‘scorched-earth strategy’, the production of pathogen-binding effector molecules such as serum amyloid A (SAA) (or others still not detected) may contribute to the resistance status of the fish during the later infection phases.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3