Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China

Author:

Agić Heda,Moczydłowska Małgorzata,Yin Lei-Ming

Abstract

AbstractLight microscope and scanning electron microscope observations on new material of unicellular microfossilsDictyosphaera macroreticulataandShuiyousphaeridium macroreticulatum,from the Mesoproterozoic Ruyang Group in China, provide insights into the microorganisms’ biological affinity, life cycle and cellular complexity.Gigantosphaeridium fibratumn. gen. et sp., is described and is one of the largest Mesoproterozoic microfossils recorded. Phenotypic characters of vesicle ornamentation and excystment structures, properties of resistance and cell wall structure inDictyosphaeraandShuiyousphaeridiumare all diagnostic of microalgal cysts. The wide size ranges of the various morphotypes indicate growth phases compatible with the development of reproductive cysts. Conspecific biologically, each morphotype represents an asexual (resting cyst) or sexual (zygotic cyst) stage in the life cycle, respectively. We reconstruct this hypothetical life cycle and infer that the organism demonstrates a reproductive strategy of alternation of heteromorphic generations. Similarly inGigantosphaeridium,a metabolically expensive vesicle with processes suggests its protective role as a zygotic cyst. In combination with all these characters and from the resemblance to extant green algae, we propose the placement of these ancient microorganisms in the stem group of Chloroplastida (Viridiplantae). A cell wall composed of primary and secondary layers inDictyosphaeraandShuiyouisphaeridiumrequired a high cellular complexity for their synthesis and the presence of an endomembrane system and the Golgi apparatus. The plastid was also present, accepting the organism was photosynthetic. The biota reveals a high degree of morphological and cell structural complexity, and provides an insight into ongoing eukaryotic evolution and the development of complex life cycles with sexual reproduction by 1200 Ma.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3