Forces, moments, and added masses for Rankine bodies

Author:

Landweber L.,Yih C. S.

Abstract

The dynamical theory of the motion of a body through an inviscid and incompressible fluid has yielded three relations: a first, due to Kirchhoff, which expresses the force and moment acting on the body in terms of added masses; a second, initiated by Taylor, which expresses added masses in terms of singularities within the bòdy; and a third, initiated by Lagally, which expresses the forces and moments in terms of these singularities. The present investigation is concerned with generalizations of the Taylor and Lagally theorems to include unsteady flow and arbitrary translational and rotational motion of the body, to present new and simple derivations of these theorems, and to compare the Kirchhoff and Lagally methods for obtaining forces and moments. In contrast with previous generalizations, the Taylor theorem is derived when other boundaries are present; for the added-mass coefficients due to rotation alone, for which no relations were known, it is shown that these relations do not exist in general, although approximate ones are found for elongated bodies. The derivation of the Lagally theorem leads to new terms, compact expressions for the force and moment, and the complete expressions of the forces and moments in terms of singularities for elongated bodies.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical Study on Wave-Induced Pressure and Drift Force on a Vertical Circular Column;Journal of the Japan Society of Naval Architects and Ocean Engineers;2023

2. Review of the Design and Technology Challenges of Zero-Emission, Battery-Driven Fast Marine Vehicles;Journal of Marine Science and Engineering;2020-11-19

3. Fundamental problems in hydrodynamics of ellipsoidal forms;Journal of Hydrodynamics;2018-06

4. Energy description for deforming bodies moving through inviscid fluids;European Journal of Mechanics - B/Fluids;2017-05

5. Kirchhoff's equations of motion via a constrained Zakharov system;Journal of Geometric Mechanics;2016-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3