Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity

Author:

Clavin P.,Williams F. A.

Abstract

To study effects of flow inhomogeneities on the dynamics of laminar flamelets in turbulent flames, with account taken of influences of the gas expansion produced by heat release, a previously developed theory of premixed flames in turbulent flows, that was based on a diffusive-thermal model in which thermal expansion was neglected, and that applied to turbulence having scales large compared with the laminar flame-thickness, is extended by eliminating the hypothesis of negligible expansion and by adding the postulate of weak-intensity turbulence. The consideration of thermal expansion motivates the formal introduction of multiple-scale methods, which should be useful in subsequent investigations. Although the hydrodynamic-instability mechanism of Landau is not considered, no restriction is imposed on the density change across the flame front, and the additional transverse convection correspondingly induced by the tilted front is described. By allowing the heat-to-reactant diffusivity ratio to differ slightly from unity, clarification is achieved of effects of phenomena such as flame stretch and the flame-relaxation mechanism traceable to transverse diffusive processes associated with flame-front curvature. By carrying the analysis to second order in the ratio of the laminar flame thickness to the turbulence scale, an equation for evolution of the flame front is derived, containing influences of transverse convection, flame relaxation and stretch. This equation explains anomalies recently observed at low frequencies in experimental data on power spectra of velocity fluctuations in turbulent flames. It also shows that, concerning the diffusive-stability properties of the laminar flame, the density change across the flame thickness produces a shift of the stability limits from those obtained in the purely diffusive-thermal model. At this second order, the turbulent correction to the flame speed involves only the mean area increase produced by wrinkling. The analysis is carried to the fourth order to demonstrate the mean-stretch and mean-curvature effects on the flame speed that occur if the diffusivity ratio differs from unity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

1. Sabathier, F. 1980 Etude experimentale de la dynamique d'un front de flamme prémélange en écoulement faiblement turbulent. Doctorat de Spécialité, Université de Provence, Marseille.

2. Williams, F. A. 1971 Theory of combustion in laminar flows.Ann. Rev. Fluid Mech. 3,171–288.

3. Williams, F. A. 1970 An approach to turbulent flame theory.J. Fluid Mech. 40,401–421.

4. Clavin, P. & Williams, F. A. 1979 Theory of premixed flame propagation in large-scale turbulence.J. Fluid Mech. 90,589–604.

5. Landau, L. D. 1944 On the theory of slow combustion.Zhur. Eksp. Teor. Fiz. 14,240.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3