Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers

Author:

Borue Vadim,Orszag Steven A.

Abstract

High-resolution numerical simulations (with up to 2563 modes) are performed for three-dimensional flow driven by the large-scale constant force fy = F cos(x) in a periodic box of size L = 2π (Kolmogorov flow). High Reynolds number is attained by solving the Navier-Stokes equations with hyperviscosity (-1)h+1Δh (h = 8). It is shown that the mean velocity profile of Kolmogorov flow is nearly independent of Reynolds number and has the ‘laminar’ form vy = V cos(x) with a nearly constant eddy viscosity. Nevertheless, the flow is highly turbulent and intermittent even at large scales. The turbulent intensities, energy dissipation rate and various terms in the energy balance equation have the simple coordinate dependence a + b cos(2x) (with a, b constants). This makes Kolmogorov flow a good model to explore the applicability of turbulence transport approximations in open time-dependent flows. It turns out that the standard expression for effective (eddy) viscosity used in K-[Escr ] transport models overpredicts the effective viscosity in regions of high shear rate and should be modified to account for the non-equilibrium character of the flow. Also at large scales the flow is anisotropic but for large Reynolds number the flow is isotropic at small scales. The important problem of local isotropy is systematically studied by measuring longitudinal and transverse components of the energy spectra and crosscorrelation spectra of velocities and velocity-pressure-gradient spectra. Cross-spectra which should vanish in the case of isotropic turbulence decay only algebraically but somewhat faster than corresponding isotropic correlations. It is verified that the pressure plays a crucial role in making the flow locally isotropic. It is demonstrated that anisotropic large-scale flow may be considered locally isotropic at scales which are approximately ten times smaller than the scale of the flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference37 articles.

1. Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2.MIT Press.

2. Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid at high Reynolds number.CR Acad. Sci. URSS 30,301.

3. E, Weinan & Shu C.-W. 1993 Effective equations and the inverse cascade theory for Kolmogorov flows.Phys. Fluids A5,998–1010.

4. She, Z.-S. & Jackson, E. 1993 On the universal form of energy spectra in fully developed turbulence.Phys. Fluids A5,1526–1528.

5. Grossmann, S. , Lohse, D. , Lvov, V. & Procaccia, I. 1994 Finite size corrections to scaling in high Reynolds number turbulence.Phys. Rev. Lett. 73,432–435.

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3