On the evolution of packets of water waves

Author:

Ablowitz Mark J.,Segur Harvey

Abstract

We consider the evolution of packets of water waves that travel predominantly in one direction, but in which the wave amplitudes are modulated slowly in both horizontal directions. Two separate models are discussed, depending on whether or not the waves are long in comparison with the fluid depth. These models are two-dimensional generalizations of the Korteweg-de Vries equation (for long waves) and the cubic nonlinear Schrödinger equation (for short waves). In either case, we find that the two-dimensional evolution of the wave packets depends fundamentally on the dimensionless surface tension and fluid depth. In particular, for the long waves, one-dimensional (KdV) solitons become unstable with respect to even longer transverse perturbations when the surface-tension parameter becomes large enough, i.e. in very thin sheets of water. Two-dimensional long waves (‘lumps’) that decay algebraically in all horizontal directions and interact like solitons exist only when the one-dimensional solitons are found to be unstable.The most dramatic consequence of surface tension and depth, however, occurs for capillary-type waves in sufficiently deep water. Here a packet of waves that are everywhere small (but not infinitesimal) and modulated in both horizontal dimensions can ‘focus’ in a finite time, producing a region in which the wave amplitudes are finite. This nonlinear instability should be stronger and more apparent than the linear instabilities examined to date; it should be readily observable.Another feature of the evolution of short wave packets in two dimensions is that all one-dimensional solitons are unstable with respect to long transverse perturbations. Finally, we identify some exact similarity solutions to the evolution equations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. Segur, H. & Ablowitz, M. J. 1976 J. Math. Phys. 17,710.

2. Ince, E. L. 1944 Ordinary Differential Equations .Dover.

3. Zakharov, V. E. & Rubenchik, A. M. 1974 Sov. Phys. J. Exp. Theor. Phys. 38,494.

4. Yuen, H. C. & Lake, B. M. 1975 Phys. Fluids 18,956.

5. Benney, D. J. & Roskes, G. J. 1969 Stud. Appl. Math. 48,377.

Cited by 410 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3