Elliptic jets. Part 1. Characteristics of unexcited and excited jets

Author:

Hussain Fazle,Husain Hyder S.

Abstract

This paper summarizes experimental studies of incompressible elliptic jets of different aspect ratios and initial conditions, and effects of excitations at selected frequencies and amplitudes. Elliptic jets are quite different from the extensively studied plane and circular jets - owing mainly to the fact that the azimuthal curvature variation of a vortical structure causes its non-uniform self-induction and hence complex three-dimensional deformation. Such deformation, combined with properly selected excitation can substantially alter entrainment and other turbulence phenomena, thus suggesting preference for the elliptic shape in many jet applications. The dominance of coherent structures in the jet far field is evident from the finding that switching over of the cross-section shape continues at least up to 100 equivalent diameters De. The locations and the number of switchovers are strongly dependent on the initial condition, on the aspect ratio, and, when excited, on the Strouhal number and the excitation level. We studied jets with constant exit momentum thickness θe, all around the perimeter, thus separating the effects of azimuthal variations of θe, (typical of elliptic jets) and of the shear-layer curvature. Also investigated are the instability characteristics, and enhanced entrainment caused by bifurcation as well as pairing of vortical structures. We discuss shear-layer and jet- column domains, and find the latter to be characterized by two modes : the preferred mode and the stable pairing mode - similar to those found in circular jets -both modes scaling on the newly-defined lengthscale De. The paper documents some time- average measurements and their comparison with those in circular and plane jets.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference54 articles.

1. Viets, H. & Sforza, P. M. 1972 Phys. Fluids 15,230.

2. Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1985 J. Fluid Mech. 159,85.

3. Tsuchiya, Y. , Horikoshi, C. & Sato, T. 1984 Turbulence Symp. p.15.1,University of Missouri-Rolla.

4. Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 J. Fluid Mech. 101,449.

5. Maxworthy, T. 1974 J. Fluid Mech. 64,227.

Cited by 448 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3