Inertial oscillations in a rotating fluid cylinder

Author:

McEwan A. D.

Abstract

A study is described of the forced inertial oscillations appearing in an axially rotating completely filled circular cylinder with plane ends. Excitation is provided by causing the top end to rotate about an axis inclined slightly to the rotation axis. Experiments demonstrate the presence of numerous low mode resonances in a densely spaced range of ratios of net cylinder height to radius in close conformance with linear inviscid theory. Where geometry permits simple corner reflexion, characteristic surfaces are revealed which confirm in part the theoretical predictions concerning their scale and form.Detailed measurements are given of the amplitude at one point within the cylinder for the condition in which the disturbance frequency equals the rotation frequency. Amplitude column height spectra are compared with theoretical estimates, and the evolution of amplitude for the simplest mode of resonant oscillation is studied. A non-linear theory based on the integral energy of large amplitude oscillation is derived whose broad features are in fair quantitative and qualitative agreement with these observations.Some investigation is made of the phenomenon ofresonant collapse, in which larger amplitude resonant oscillations, after persisting in an apparently laminar form, degenerate abruptly into a state of agitation and disorder from which they do not recover. It is found that the time for emergence of this collapse after the introduction of the forcing disturbance has a close correspondence with the theoretical period of one ‘evolutionary’ cycle of momentum exchange between the main motion and the secondary oscillation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference19 articles.

1. Aldridge, K. D. & Toomre, A. 1969 J. Fluid Mech. 37,307–323.

2. Bjerknes, V. , Bjerknes, J. , Solberg, H. & Bergeron, T. 1933 Physikalisch Hydrodynamik ,pp.465–471.Berlin:Springer.

3. Malkkus, W. V. R. 1968,Science,160,259–264.

4. Fultz, D. 1959 J. Meteor. 16,199–208.

5. Wood, W. W. 1966 Proc. Roy. Soc. Lond. A298,181–212.

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3