Author:
BENNETTS L. G.,WILLIAMS T. D.
Abstract
An efficient solution method is presented for linear and time-harmonic water-wave scattering by two classes of a three-dimensional hydroelastic system. In both cases, the fluid domain is of infinite horizontal extent and finite depth. The fluid surface is either open, except in a finite region where it is covered by a thin-elastic plate, which represents an ice floe, or fully covered by a plate, except in a finite region where it is open, which represents an ice polynya. The approach outlined herein permits the boundary between the ice-covered and free-surface fluid regions to be described by an arbitrary smooth curve. To solve the governing equations of the full three-dimensional linear problem, they are first projected onto the horizontal plane by using an approximation theory that combines an expansion of the vertical motion of the fluid in a finite set of judiciously chosen modes with a variational principle. This generates a system of two-dimensional partial differential equations that are converted into a set of one-dimensional integro-differential equations using matrices of Green's functions, which are solved numerically through an application of the Galerkin technique. A numerical results section justifies the consideration of an arbitrarily shaped boundary by comparing the response of differently shaped floes and polynyas over a range of relevant wavenumbers. Comparisons are made in terms of the magnitude and direction of the far-field scattering response, and also the maximum average curvature of the floe and the maximum wave elevation within the polynya.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献