The laminar and turbulent mixing of jets of compressible fluid. Part II The mixing of two semi-infinite streams

Author:

Crane L. J.

Abstract

This paper presents the application of the methods developed in a previous paper (Part I, Crane & Pack 1957) to the mixing of two parallel streams for both laminar and turbulent flows. The effects of both high velocity and large temperature difference are treated together. The method used consists in developing the stream function in a double series of powers of two parameters, the first being the Mach number and the second depending on the temperature difference of the streams. Analytical expressions are found for the terms up to the second order in the series for the stream function when the streams do not differ too greatly in velocity and temperature. However, when one of the streams is at rest the analytical method is no longer sufficiently accurate, and for this case numerical solutions are given.For laminar mixing the most important effect is that of ’change of scale’, as was found in Part I for a laminar jet at large distances from the orifice. For turbulent half-jets the effect of ’change of scale’ and the effect of the perturbation terms due to the Mach number of the flows are approximately equal and opposite, leaving the form of the velocity profile sensibly unchanged from that in incompressible flow. This last result is confirmed by comparison with some experiments of Laurence (1955) on a two-dimensional jet at M = 0·7. Lastly, the effect of temperature differences is shown to be relatively unimportant even when these are fairly considerable.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference7 articles.

1. Johannesen, N. H. 1957 Aero. Res. Counc., Lond., Unpub. Rep. no. 18967.

2. Pai, S. I. 1954 Fluid Dynamics of Jets .Princeton:Van Nostrand.

3. Lessen, M. 1949 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 1929.

4. Laurence, J. C. 1955 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 3561.

5. Görtler, H. 1942 Z. angew. Math. Mech. 22,244.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3