Atomic recombination in a hypersonic wind-tunnel nozzle

Author:

Bray K. N. C.

Abstract

The flow of an ideal dissociating gas through a nearly conical nozzle is considered. The equations of one-dimensional motion are solved numerically assuming a simple rate equation together with a number of different values for the rate constant. These calculations suggest that deviations from chemical equilibrium will occur in the nozzle if the rate constant lies within a very wide range of values, and that, once such a deviation has begun, the gas will very rapidly ’freeze’. The dissociation fraction will then remain almost constant if the flow is expanded further, or even if it passes through a constant area section. An approximate method of solution, making use of this property of sudden ’freezing’ of the flow, has been developed and applied to the problem of estimating the deviations from equilibrium under a wide range of conditions. If all the assumptions made in this paper are accepted, then lack of chemical equilibrium may be expected in the working sections of hypersonic wind tunnels and shock tubes. The shape of an optimum nozzle is derived in order to minimize this departure from equilibrium.It is shown that, while the test section conditions are greatly affected by ’freezing’, the flow behind a normal shock wave is only changed slightly. The heat transfer rate and drag of a blunt body are estimated to be reduced by only about 25% even if complete freezing occurs. However, the shock wave shape is shown to be rather more sensitive to departures from equilibrium.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference21 articles.

1. Bray, K. N. C. , Pennelegion, L. & East, R. A. 1958 Aero. Res. Counc., Lond., Rep. no. 20,520.

2. Lighthill, M. J. 1957 J. Fluid Mech. 2,1.

3. Resler, E. L. 1957 J. Aero. Sci. 24,11.

4. Wood, G. P. 1956 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 3634.

5. Hertzberg, A. 1957 Cornell Aero. Lab., Rep. no. AD-1052-A-5.

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3