Three-dimensional simulation of a flapping flag in a uniform flow

Author:

HUANG WEI-XI,SUNG HYUNG JIN

Abstract

A three-dimensional computational model is developed for simulating the flag motion in a uniform flow. The nonlinear dynamics of the coupled fluid–flag system after setting up of flapping is investigated by a series of numerical tests. At low Reynolds numbers, the flag flaps symmetrically about its centreline when gravity is excluded, and the bending in the spanwise direction is observed near the corners on the trailing edge. As the Reynolds number increases, the spanwise bending is flattened due to the decrease of the positive pressure near the side edges as well as the viscous force of the fluid. At a certain critical Reynolds number, the flag loses its symmetry about the centreline, which is shown to be related to the coupled fluid–flag instability. The three-dimensional vortical structures shed from the flag show a significant difference from the results of two-dimensional simulations. Hairpin or O-shaped vortical structures are formed behind the flag by connecting those generated at the flag side edges and the trailing edge. Such vortical structures have a stabilization effect on the flag by reducing the pressure difference across the flag. Moreover, the positive pressure near the side edges is significantly reduced as compared with that in the center region, causing the spanwise bending. The Strouhal number defined based on the flag length is slightly dependent on the Reynolds number and the flag width, but scales with the density ratio as St ~ ρ−1/2). On the other hand, the flapping-amplitude-based Strouhal number remains close to 0.2, consistent with the values reported for flying or swimming animals. A flag flapping under gravity is then simulated, which is directed along the negative spanwise direction. The sagging down of the flag and the rolling motion of the upper corner are observed. The dual effects of gravity are demonstrated, i.e. the destabilization effect like the flag inertia and the stabilization effect by increasing the longitudinal tension force.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3