Face-tracking algorithm for large-amplitude head motions with a 7-DOF manipulator

Author:

Zhang ShuaiORCID,Zhao Cancan,Yuan Xin,Ouyang Bo,Yang Shanlin

Abstract

Abstract The collection of facial action data is essential for the accurate evaluation of a patient’s condition in the intensive care unit, such as pain evaluation. An automatic face-tracking system is demanded to reduce the burden of data collection on the medical staff. However, many previous studies assume that the optimal trajectory of a robotic tracking system is reachable which is inapplicable for large-amplitude head motions. To tackle this problem, we propose a region-based face-tracking algorithm for large-amplitude head motion with a 7-DOF manipulator. A configuration-based optimization algorithm is proposed to trade-off between theoretical optimal pose and workspace constraints through the assignment of importance weights. To increase the probability of recapturing the face exceeding the reachable workspace of the manipulator, the camera is directed toward the center of the head, named the facial orientation center (FOC) constraint. Furthermore, a region-based tracking approach is designed to stabilize the manipulator for small amplitude head motions and smooth the tracking trajectory by adjusting the joint angle in the null space of the 7-DOF manipulator. Experimental results demonstrate the effectiveness of the proposed algorithm in tracking performance and finding an appropriate configuration for the unreachable theoretical optimal configuration. Moreover, the proposed algorithm with FOC constraint can successfully follow the head motion as losing 33.2% of the face during the tracking.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3