Climate model-driven seasonal forecasting approach with deep learning

Author:

Unal AlperORCID,Asan Busra,Sezen Ismail,Yesilkaynak Bugra,Aydin YusufORCID,Ilicak Mehmet,Unal Gozde

Abstract

Abstract Understanding seasonal climatic conditions is critical for better management of resources such as water, energy, and agriculture. Recently, there has been a great interest in utilizing the power of Artificial Intelligence (AI) methods in climate studies. This paper presents cutting-edge deep-learning models (UNet++, ResNet, PSPNet, and DeepLabv3) trained by state-of-the-art global CMIP6 models to forecast global temperatures a month ahead using the ERA5 reanalysis dataset. ERA5 dataset was also used for fine-tuning as well performance analysis in the validation dataset. Ten different setups (with CMIP6 and CMIP6 + ERA5 fine-tuning) including six meteorological parameters (i.e., 2 m temperature, 10 m eastward component of wind, 10 m northward component of wind, geopotential height at 500 hPa, mean sea-level pressure, and precipitation flux) and elevation were used with both four different algorithms. For each model 14 different sequential and nonsequential temporal settings were used. The mean absolute error (MAE) analysis revealed that UNet++ with CMIP6 with 2 m temperature + elevation and ERA5 fine-tuning model with “Year 3 Month 2” temporal case provided the best outcome with an MAE of 0.7. Regression analysis over the validation dataset between the ERA5 data values and the corresponding AI model predictions revealed slope and $ {R}^2 $ values close to 1 suggesting a very good agreement. The AI model predicts significantly better than the mean CMIP6 ensemble between 2016 and 2021. Both models predict the summer months more accurately than the winter months.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3