Axially homogeneous Rayleigh–Bénard convection in a cylindrical cell

Author:

Schmidt Laura E.,Calzavarini Enrico,Lohse Detlef,Toschi Federico,Verzicco Roberto

Abstract

AbstractPrevious numerical studies have shown that the ‘ultimate regime of thermal convection’ can be attained in a Rayleigh–Bénard cell when the kinetic and thermal boundary layers are eliminated by replacing both lateral and horizontal walls with periodic boundary conditions (homogeneous Rayleigh–Bénard convection). Then, the heat transfer scales like $\mathit{Nu}\ensuremath{\sim} {\mathit{Ra}}^{1/ 2} $ and turbulence intensity as $\mathit{Re}\ensuremath{\sim} {\mathit{Ra}}^{1/ 2} $, where the Rayleigh number $\mathit{Ra}$ indicates the strength of the driving force (for fixed values of $\mathit{Pr}$, which is the ratio between kinematic viscosity and thermal diffusivity). However, experiments never operate in unbounded domains and it is important to understand how confinement might alter the approach to this ultimate regime. Here we consider homogeneous Rayleigh–Bénard convection in a laterally confined geometry – a small-aspect-ratio vertical cylindrical cell – and show evidence of the ultimate regime as $\mathit{Ra}$ is increased: in spite of the lateral confinement and the resulting kinetic boundary layers, we still find $\mathit{Nu}\ensuremath{\sim} \mathit{Re}\ensuremath{\sim} {\mathit{Ra}}^{1/ 2} $ at $\mathit{Pr}= 1$. Further, it is shown that the system supports solutions composed of modes of exponentially growing vertical velocity and temperature fields, with $\mathit{Ra}$ as the critical parameter determining the properties of these modes. Counter-intuitively, in the low-$\mathit{Ra}$ regime, or for very narrow cylinders, the numerical simulations are susceptible to these solutions, which can dominate the dynamics and lead to very high and unsteady heat transfer. As $\mathit{Ra}$ is increased, interaction between modes stabilizes the system, evidenced by the increasing homogeneity and reduced fluctuations in the root-mean-square velocity and temperature fields. We also test that physical results become independent of the periodicity length of the cylinder, a purely numerical parameter, as the aspect ratio is increased.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference37 articles.

1. Diffusion and Mass Transport in Tubes

2. Turbulent Thermal Convection at Arbitrary Prandtl Number

3. 32. Simitev R. D. & Busse F. H. 2010 Problems of astrophysical turbulent convection: thermal convection in a layer without boundaries. In Center for Turbulence Research, Proceedings of the Summer Program, 2010, Stanford University, CA (ed. Parviz Moin, Johan Larsson & Nagi Mansour), website where the proccedings can be found:http://www.stanford.edu/group/ctr/Summer/SP10/.

4. Torque Scaling in Turbulent Taylor-Couette Flow with Co- and Counterrotating Cylinders

5. The stability of axisymmetric convection

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3