Effects of concurrency on epidemic spreading in Markovian temporal networks

Author:

Liu RuodanORCID,Ogura MasakiORCID,Dos Reis Elohim FonsecaORCID,Masuda NaokiORCID

Abstract

Abstract The concurrency of edges, quantified by the number of edges that share a common node at a given time point, may be an important determinant of epidemic processes in temporal networks. We propose theoretically tractable Markovian temporal network models in which each edge flips between the active and inactive states in continuous time. The different models have different amounts of concurrency while we can tune the models to share the same statistics of edge activation and deactivation (and hence the fraction of time for which each edge is active) and the structure of the aggregate (i.e., static) network. We analytically calculate the amount of concurrency of edges sharing a node for each model. We then numerically study effects of concurrency on epidemic spreading in the stochastic susceptible-infectious-susceptible and susceptible-infectious-recovered dynamics on the proposed temporal network models. We find that the concurrency enhances epidemic spreading near the epidemic threshold, while this effect is small in many cases. Furthermore, when the infection rate is substantially larger than the epidemic threshold, the concurrency suppresses epidemic spreading in a majority of cases. In sum, our numerical simulations suggest that the impact of concurrency on enhancing epidemic spreading within our model is consistently present near the epidemic threshold but modest. The proposed temporal network models are expected to be useful for investigating effects of concurrency on various collective dynamics on networks including both infectious and other dynamics.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3