Generalization in transfer learning: robust control of robot locomotion

Author:

Ada Suzan EceORCID,Ugur EmreORCID,Akin H. Levent

Abstract

AbstractIn this paper, we propose a set of robust training methods for deep reinforcement learning to transfer learning acquired in one control task to a set of previously unseen control tasks. We improve generalization in commonly used transfer learning benchmarks by a novel sample elimination technique, early stopping, and maximum entropy adversarial reinforcement learning. To generate robust policies, we use sample elimination during training via a method we call strict clipping. We apply early stopping, a method previously used in supervised learning, to deep reinforcement learning. Subsequently, we introduce maximum entropy adversarial reinforcement learning to increase the domain randomization during training for a better target task performance. Finally, we evaluate the robustness of these methods compared to previous work on simulated robots in target environments where the gravity, the morphology of the robot, and the tangential friction coefficient of the environment are altered.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Reference44 articles.

1. [21] Al-Shedivat, M. , Bansal, T. , Burda, Y. , Sutskever, I. , Mordatch, I. and Abbeel, P. , “Continuous adaptation via meta-learning in nonstationary and competitive environments,” arXiv preprint, arXiv:1710.03641 (2017).

2. [16] Schulman, J. , Levine, S. , Abbeel, P. , Jordan, M. and Moritz, P. , “Trust Region Policy Optimization,” In: International Conference on Machine Learning (2015) pp. 1889–1897.

3. ZERO-MOMENT POINT — THIRTY FIVE YEARS OF ITS LIFE

4. [9] Li, Z. , Cheng, X. , Peng, X. B. , Abbeel, P. , Levine, S. , Berseth, G. and Sreenath, K. , “Reinforcement learning for robust parameterized locomotion control of bipedal robots,” CoRR abs/2103.14295 (2021). arXiv:2103.14295. https://arxiv.org/abs/2103.14295

5. [32] Pinto, L. , Davidson, J. , Sukthankar, R. and Gupta, A. , “Robust Adversarial Reinforcement Learning,” In: Proceedings of the 34th International Conference on Machine Learning, Volume 70 (JMLR.org, 2017) pp. 2817–2826.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3