Abstract
In Part 1 of this work, we have derived a dynamical system describing the approach to a finite-time singularity of the Navier–Stokes equations. We now supplement this system with an equation describing the process of vortex reconnection at the apex of a pyramid, neglecting core deformation during the reconnection process. On this basis, we compute the maximum vorticity $\unicode[STIX]{x1D714}_{max}$ as a function of vortex Reynolds number $R_{\unicode[STIX]{x1D6E4}}$ in the range $2000\leqslant R_{\unicode[STIX]{x1D6E4}}\leqslant 3400$, and deduce a compatible behaviour $\unicode[STIX]{x1D714}_{max}\sim \unicode[STIX]{x1D714}_{0}\exp [1+220(\log [R_{\unicode[STIX]{x1D6E4}}/2000])^{2}]$ as $R_{\unicode[STIX]{x1D6E4}}\rightarrow \infty$. This may be described as a physical (although not strictly mathematical) singularity, for all $R_{\unicode[STIX]{x1D6E4}}\gtrsim 4000$.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献