Fluctuation in redox conditions and the evolution of early Cambrian life constrained by nitrogen isotopes in the middle Yangtze Block, South China

Author:

Wei Kai,Cao HanshengORCID,Chen Fajin,Wang Zaiyun,An Zhihui,Huang Hanli,Chen Chunqing

Abstract

Abstract The Ediacaran–Cambrian (E-C) transition (∼542–517 Ma) witnessed the rapid evolution of Cambrian animals, which was accompanied by carbon cycling anomalies and a significant increase in the concentration of oxygen in Earth’s atmosphere. The mechanisms stimulating the evolution of complex eukaryotes, however, remain problematic, especially concerning the link between biological evolution and contemporaneous changes in the oceanic environment. In this study, integrated δ13Ccarb–δ13Corg–δ15N compositions were analysed from the YD-4 core samples to understand redox fluctuations and nitrogen cycling of the middle Yangtze Block across the E-C transition. Two negative δ13Ccarb excursions (N1 and N2) and a positive δ13Ccarb excursion (P1) are identified from the studied samples and are supposedly of primary origin. Constrained by of the U-Pb age, biolithology and pattern of isotopic variation, N1, P1 and N2 are comparable to the Basal Cambrian Carbon Isotope Excursion (BACE), Zhujiaqing Carbon Isotope Excursion (ZHUCE) and Shiyantou Carbon Isotope Excursion (SHICE). We interpreted the decreased δ15N values in this study as resulting from intensified atmospheric nitrogen fixation driven by enhanced denitrification associated with expanded marine anoxia, as well as partial ammonium assimilation, while increased δ15N values suggest weakened denitrification associated with an amplified oxic water mass. The temporal coincidence of N1 and N2, with two episodes of negative δ15N excursions, and of P1, with a positive δ15N excursion, suggests that variable oceanic redox conditions and nitrogen bioavailability may have influenced the evolution of the Cambrian eukaryote-dominated community.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3