Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy

Author:

Margittai Martin,Langen Ralf

Abstract

AbstractThe deposition of amyloid- and amyloid-like fibrils is the main pathological hallmark of numerous protein misfolding diseases including Alzheimer's disease, transmissible spongiform encephalopathy, and type 2 diabetes. Besides the well-established role in disease, recent work on a variety of organisms ranging from bacteria to humans suggests that amyloid fibrils can also convey biological functions. To better understand the molecular mechanisms by which amyloidogenic proteins misfold in disease or perform biological functions, structural information is essential. Although high-resolution structural analysis of amyloid fibrils has been challenging, a combination of biophysical approaches is beginning to unravel the various structural features of amyloid fibrils. Here we review these recent developments with particular emphasis on amyloid fibrils that have been studied using site-directed spin labeling and electron paramagnetic resonance spectroscopy. This approach has been used to define the precise location of fibril-forming core regions and identify local secondary structures within such core regions. Perhaps one of the most remarkable findings arrived at by site-directed spin labeling was that most fibrils that contain an extensive core region of ∼20 amino acids or more share a common parallel in-register arrangement of β strands. The preference for this arrangement can be explained on topological grounds and may be rationalized by the maximization of hydrophobic contact surface.

Publisher

Cambridge University Press (CUP)

Subject

Biophysics

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3