Desert Ecosystems: Their Resources in Space and Time

Author:

Crawford Clifford S.,Gosz James R.

Abstract

The dynamics of desert ecosystems control levels of resources that are essential to the survival of desert biotas. Because precipitation is both low and relatively unpredictable in arid regions, the climates, topographies, and soils, of these areas present formidable constraints to resource availability in space and time. And for the same reason, the processes of production, consumption, decomposition, and nutrient-cycling in deserts are also highly irregular and difficult to predict with accuracy. For example, global models relating actual evapotranspiration to primary production and decomposition apply poorly in arid regions.Surprisingly great amounts of carbon are stored in desert soils, particularly in caliche deposits which represent a major ‘sink’ of carbon from the atmosphere. In Arizona desert soils, inorganic carbon exceeds organic carbon by a factor of > 10. Direct use of organic carbon is made principally by organisms that break down desert litter and simultaneously cause relatively high rates of nitrogen mineralization. While nitrogen is traditionally considered deficient in arid environments, its flux is considerable because of high rates of gain by fixation and loss by denitrification and volatilization. Nitrogen accumulates in ‘islands of fertility’ beneath desert shrubs where it becomes relatively available because of (i) its high concentration in plant litter, and (ii) reduced activity of any aromatic modifiers that retard decomposition.It is misleading in deserts to relate nutrient availability to yearly averages, as nutrients may become highly available following pulses of ‘effective’ precipitation. Moreover, mineralization and subsequent availability to plants of phosphorous, the ‘master element’ in nutrient cycling, are moderately independent of nitrogen mineralization and can proceed rapidly. Clearly, the case for nutrient deficiency in deserts may be overstated.Consumption of primary production has varying effects on rates of resource availability in desert ecosystems. Generally weak regulation of primary production is predicted for consumers of green vegetation, except occasionally during early drought. Carnivores should exert variable controls over their prey, while pollinators, seed-eaters, and detritivores—most of which are strongly soil-associated—should have the greatest impacts on primary production and nutrient cycling.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

Reference104 articles.

1. Mortality of Transplanted Saguaro Seedlings

2. Evapotranspiration and primary productivity; C.W. Thornthwaite Memorial Model;Lieth;Publ. Climatol.,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3