Abstract
Abstract
Transparent, understandable, and persuasive recommendations support the electricity consumers’ behavioral change to tackle the energy efficiency problem. This paper proposes an explainable multi-agent recommendation system for load shifting for household appliances. First, we extend a novel multi-agent approach by designing and implementing an Explainability Agent that provides explainable recommendations for optimal appliance scheduling in a textual and visual manner. Second, we enhance the predictive capacity of other agents by including weather data and applying state-of-the-art models (i.e., k-nearest-neighbors, extreme gradient boosting, adaptive boosting, Random Forest, logistic regression, and explainable boosting machines). Since we want to help the user understand a single recommendation, we focus on local explainability approaches. In particular, we apply post-model approaches local, interpretable, model-agnostic explanation and SHapley Additive exPlanations as model-agnostic tools that can explain the predictions of the chosen classifiers. We further provide an overview of the predictive and explainability performance. Our results show a substantial improvement in the performance of the multi-agent system while at the same time opening up the “black box” of recommendations.
Publisher
Cambridge University Press (CUP)
Reference21 articles.
1. Meteostat (2022) GitHub repository meteostat/meteostat-python. Access and analyze historical weather and climate data with Python. Available at https://github.com/meteostat/meteostat-python (accessed 08 November 2023).
2. European Commission (2022) REPowerEU: A Plan to Rapidly Reduce Dependence on Russian Fossil Fuels and Fast Forward the Green Transition. 18 May 2022. Available at https://ec.europa.eu/commission/presscorner/detail/en/IP_22_3131 (accessed 08 November 2023).
3. Machine learning interpretability: A survey on methods and metrics;Carvalho;Electronics,2019
4. A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects;Himeur;Information Fusion,2021
5. Personalized residential energy usage recommendation system based on load monitoring and collaborative filtering;Luo;IEEE Transactions on Industrial Informatics,2021