An explainable multi-agent recommendation system for energy-efficient decision support in smart homes

Author:

Zharova AlonaORCID,Boer Annika,Knoblauch Julia,Schewina Kai IngoORCID,Vihs Jana

Abstract

Abstract Transparent, understandable, and persuasive recommendations support the electricity consumers’ behavioral change to tackle the energy efficiency problem. This paper proposes an explainable multi-agent recommendation system for load shifting for household appliances. First, we extend a novel multi-agent approach by designing and implementing an Explainability Agent that provides explainable recommendations for optimal appliance scheduling in a textual and visual manner. Second, we enhance the predictive capacity of other agents by including weather data and applying state-of-the-art models (i.e., k-nearest-neighbors, extreme gradient boosting, adaptive boosting, Random Forest, logistic regression, and explainable boosting machines). Since we want to help the user understand a single recommendation, we focus on local explainability approaches. In particular, we apply post-model approaches local, interpretable, model-agnostic explanation and SHapley Additive exPlanations as model-agnostic tools that can explain the predictions of the chosen classifiers. We further provide an overview of the predictive and explainability performance. Our results show a substantial improvement in the performance of the multi-agent system while at the same time opening up the “black box” of recommendations.

Publisher

Cambridge University Press (CUP)

Reference21 articles.

1. Meteostat (2022) GitHub repository meteostat/meteostat-python. Access and analyze historical weather and climate data with Python. Available at https://github.com/meteostat/meteostat-python (accessed 08 November 2023).

2. European Commission (2022) REPowerEU: A Plan to Rapidly Reduce Dependence on Russian Fossil Fuels and Fast Forward the Green Transition. 18 May 2022. Available at https://ec.europa.eu/commission/presscorner/detail/en/IP_22_3131 (accessed 08 November 2023).

3. Machine learning interpretability: A survey on methods and metrics;Carvalho;Electronics,2019

4. A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects;Himeur;Information Fusion,2021

5. Personalized residential energy usage recommendation system based on load monitoring and collaborative filtering;Luo;IEEE Transactions on Industrial Informatics,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3