Central regulation of photosensitive membrane turnover in the lateral eye of Limulus. I. Octopamine primes the retina for daily transient rhabdom shedding

Author:

KHADILKAR RASHMI V.,MYTINGER JOHN R.,THOMASON LAURA E.,RUNYON SCOTT L.,WASHICOSKY KEVIN J.,JINKS ROBERT N.

Abstract

Limulus lateral eyes shed and renew a portion of their photosensitive membrane (rhabdom) daily. Shedding, in many species including Limulus, is regulated by complex interactions between circadian rhythms and light. Little is known about how circadian clocks and photoreceptors communicate to regulate shedding. Limulus photoreceptors do not contain an endogenous circadian oscillator, but rely upon efferent outflow from a central clock for circadian timing. To investigate whether the putative efferent neurotransmitter octopamine (OA) communicates circadian rhythms that prime the lateral eye for transient rhabdom shedding, we decoupled photoreceptors from the clock by transecting the lateral optic nerve (contains the retinal efferent fibers). Overnight (6 h) intraretinal injections of 40 μM OA restored transient shedding to lateral eyes with transected nerves to levels comparable to those of intact internal control eyes. To determine whether OA acts alone in communicating circadian rhythms that prime the lateral eye for transient shedding, we “primed” eyes with intact nerves for transient shedding with exogenous OA during subjective day. In nature, lateral eyes shed their rhabdoms only once a day at dawn following overnight efferent priming. Eyes in animals placed in darkness during subjective day, when the retinal efferents are quiescent, and injected for 6 h with 40 μM OA shed their rhabdoms in response to a second introduction to light. Untreated control eyes of the same animals did not. The same results were observed in vitro in lateral eyes treated similarly. Octopamine is the only efferent neurotransmitter/messenger required to make lateral eyes competent for transient shedding. Phentolamine, an OA receptor antagonist, reduced the number of photoreceptors primed for transient shedding and the amount of rhabdom shed in those photoreceptors suggesting that OA acts via a specific OA receptor.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3