Multi-symplectic structures and wave propagation

Author:

BRIDGES THOMAS J.

Abstract

A Hamiltonian structure is presented, which generalizes classical Hamiltonian structure, by assigning a distinct symplectic operator for each unbounded space direction and time, of a Hamiltonian evolution equation on one or more space dimensions. This generalization, called multi-symplectic structures, is shown to be natural for dispersive wave propagation problems. Application of the abstract properties of the multi-symplectic structures framework leads to a new variational principle for space-time periodic states reminiscent of the variational principle for invariant tori, a geometric reformulation of the concepts of action and action flux, a rigorous proof of the instability criterion predicted by the Whitham modulation equations, a new symplectic decomposition of the Noether theory, generalization of the concept of reversibility to space-time and a proof of Lighthill's geometric criterion for instability of periodic waves travelling in one space dimension. The nonlinear Schrödinger equation and the water-wave problem are characterized as Hamiltonian systems on a multi-symplectic structure for example. Further ramifications of the generalized symplectic structure of theoretical and practical interest are also discussed.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 342 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symmetry-breaking dynamics of a flexible hub-beam system rotating around an eccentric axis;Mechanical Systems and Signal Processing;2025-01

2. Coupling dynamic problem of a completely free weightless thick plate in geostationary orbit;Applied Mathematical Modelling;2025-01

3. Forty years: Geometric numerical integration of dynamical systems in China;International Journal of Modeling, Simulation, and Scientific Computing;2024-08-28

4. Presymplectic minimal models of local gauge theories;Journal of Physics A: Mathematical and Theoretical;2024-08-02

5. Recent advances in the numerical solution of the Nonlinear Schrödinger Equation;Journal of Computational and Applied Mathematics;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3