Boundary layer growth

Author:

Goldstein S.,Rosenhead L.

Abstract

When relative motion of a viscous incompressible fluid of constant density and an immersed solid body is started impulsively from rest, the initial motion of the fluid is irrotational, without circulation. This is shown by observation, and may be seen in many of the published photographs of fluid flow. The theoretical proof is exactly the same as that given, for inviscid fluids, in treatises on hydrodynamics; for it may be assumed that the viscous stresses remain finite. The fluid in contact with the solid body is, however, at rest relative to the boundary, whilst the adjacent layer of fluid is slipping past the boundary with a velocity determined from the theory of the velocity potential. There is thus initially a surface of slip, or vortex sheet, in the fluid, coincident with the surface of the solid body. In other words, there is a “boundary layer” of zero thickness. The vorticity in the sheet diffuses from the boundary further into the fluid, and is convected by the stream. The boundary layer grows in thickness. (The same results follow from a consideration of the equations for the vorticity components in a viscous incompressible fluid, or of the equation for the circulation in a circuit moving with the fluid.)

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference5 articles.

1. Proc. Camb. Phil. Soc. 31 (1935), 582–4.

2. Handbuch der exper. Phys. 4, pt. 1 (1931), 272–9.

3. Zeitschr. f. Math. u. Phys. 56 (1908), 20–37.

4. Lamb , Hydrodynamics (1932 edition), p. 578.

5. The Equations of Viscous Motion and the Circulation Theorem

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3